A Parameterized Approximation Algorithm for the Chromatic k-Median Problem
نویسندگان
چکیده
منابع مشابه
A constant-factor approximation algorithm for the k-median problem
We present the first constant-factor approximation algorithm for the metric k-median problem. The k-median problem is one of the most well-studied clustering problems, i.e., those problems in which the aim is to partition a given set of points into clusters so that the points within a cluster are relatively close with respect to some measure. For the metric k-median problem, we are given n poin...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولAn improved approximation algorithm for k-median problem using a new factor-revealing LP
The k-median problem is a well-known strongly NP-hard combinatorial optimization problem of both theoretical and practical significance. The previous best approximation ratio for this problem is 2.611+ǫ (Bryka et al. 2014) based on an (1, 1.95238219) bi-factor approximation algorithm for the classical facility location problem (FLP). This work offers an improved algorithm with an approximation ...
متن کاملAn Improved Approximation Algorithm for the Hard Uniform Capacitated k-median Problem
In the k-median problem, given a set of locations, the goal is to select a subset of at most k centers so as to minimize the total cost of connecting each location to its nearest center. We study the uniform hard capacitated version of the k-median problem, in which each selected center can only serve a limited number of locations. Inspired by the algorithm of Charikar, Guha, Tardos and Shmoys,...
متن کاملFast Approximation Algorithm for the 1-Median Problem
We present a fast approximation algorithm for the 1-median problem. Our algorithm can be applied to metric undirected graphs with node weight. Given a node v, our algorithm repeatedly executes a process of finding a node with higher centrality,in which an approximate centrality of each node v’ is calculated for the subgraph called the best kNSPGS of (v,v’). The best kNSPGS of (v,v’) is a subgra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: 2169-3536
DOI: 10.1109/access.2021.3060422